Image Geo-Site Estimation Using Convolutional Auto-Encoder and Multi-Label Support Vector Machine
نویسندگان
چکیده
The estimation of an image geo-site solely based on its contents is a promising task. Compelling labelling relies heavily contextual information, which not as simple recognizing single object in image. An Auto-Encode-based support vector machine approach proposed this work to estimate the address issue misclassifying estimations. method for conducted using dataset consisting 125 classes various images captured within countries. uses convolutional Auto-Encode training and dimensionality reduction. After that, acquired preprocessed input further processed by multi-label machine. performance assessment has been accomplished accuracy, sensitivity, specificity, F1-score evaluation parameters. Eventually, presented article outperforms K-Nearest Neighbor Auto-Encode-Random Forest methods.
منابع مشابه
A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملMonthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملA Topographic Support Vector Machine: Classification Using Local Label Configurations
The standard approach to the classification of objects is to consider the examples as independent and identically distributed (iid). In many real world settings, however, this assumption is not valid, because a topographical relationship exists between the objects. In this contribution we consider the special case of image segmentation, where the objects are pixels and where the underlying topo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information
سال: 2023
ISSN: ['2078-2489']
DOI: https://doi.org/10.3390/info14010029